
C H A P T E R T W E L V E

Dynamic Programming

12.1 Introduction

In the previous chapter, we introduced the notion of storage, embodied in Scheme
by vectors. The point of storage is to allow one part of a computation to store a
value that a later part of the computation will retrieve. However, this leaves open
the question of what ultimate objectives can be served by this “squirreling away” of
information.

In this chapter, we’ll introduce one important use for storage, a technique that
can be used to make some computations dramatically more efficient. In particular,
we’ll look at tree-recursive processes that naturally wind up repeatedly recomputing
the solution to identical subproblems. By using storage, we can keep track of which
computations have already been done and what the results were so that we can reuse
the results rather than recompute them. We’ll look at two variants on this theme,
one in which results are stashed away on an “opportunistic” basis as they need to
be computed and another in which we systematically precompute results before we
have any need for them. Although we’ll look at the differences between these two
variants, we’ll also emphasize their commonality. Both have the power to turn a
computation that takes too long to be feasible into one that completes in an instant.

We’ll start with an overview section, in which we take a single simple example
problem through all three different versions: the original tree-recursive form, the
version that opportunistically stores results (memoization), and the version that pre-
computes results (dynamic programming). We’ll then have a section apiece devoted
to memoization and dynamic programming, in which we work through more exam-
ples, addressing some side issues that don’t arise in our simple introductory example.
A short section brings the two variants back together in order to compare their rela-
tive advantages. Finally, you will apply these techniques to the problem of breaking
paragraphs into lines in a visually pleasing way.

379

Out of print; full text available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Excerpted from Concrete Abstractions; copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight



380 Chapter 12 Dynamic Programming

12.2 Revisiting Tree Recursion

During summer vacation this year, two of us decided to add a path from our back
door to the garden. We had two different lengths of paving stones available to us;
one was 1 foot long and the other was 2 feet. (Both were wide enough for the kind
of path we had in mind.) We were willing to use any combination of the two sizes,
provided that the total length worked out correctly. When we tried to decide the
exact pattern of stones, however, we found that we could not agree on which pattern
to follow. At that point, the third author suggested that we use Scheme to generate
all the possible patterns, present them to him, and he would pick the most pleasing
one. For example, if the path was only 4 feet long, there would be five patterns that
look like these:

As we headed indoors to try this idea out, one of us had second thoughts and became
concerned about the number of pictures we might wind up generating. We decided
to first write a procedure that would count the number of different ways to make a
path using these pavers.

To write this procedure, we can concentrate on the length of the path. If the
length is 1 foot, there is only one way to form it, because we must use one of the
pavers that are 1 foot long. If the length is 0 feet, there is only one way to form it, by
using no pavers at all. On the other hand, if the length is 2 or more feet, we have
two choices for the first paver. If we use a 1-foot paver as the first paver, the number
of ways to pave the remainder of the walk is the same as the number of ways to
construct a walk that is 1 foot shorter. Similarly, if the first stone is a 2-foot paver,
the number of ways to complete the path is the number of ways to construct a path
that is 2 feet shorter. Thus, the total number of ways (starting with either size paver)
to construct a path that is a given length will be the sum of the number of ways to
construct a path that is 1 foot shorter and the number of ways to construct a walk 2
feet shorter:

(define walk-count
(lambda (feet)
(cond ((= feet 0) 1)

((= feet 1) 1)
(else (+ (walk-count (- feet 1))

(walk-count (- feet 2)))))))

We tested this out on some relatively small numbers, and it seemed to work. For
example, it correctly told us that there are five ways to pave a 4-foot walk, as shown
by the preceding pictures. So, we moved to our real question, which was how many
ways there were to pave the 30-foot path in the back yard. After waiting over a minute



12.2 Revisiting Tree Recursion 381

without getting an answer, we got impatient and gave up. Interestingly, the answer
was nowhere near as slow in arriving for only slightly shorter paths; for example, we
were able to find in under a second that there are 10,946 different ways to pave a
20-foot path. Later, when we were feeling more patient, we timed the procedure for
all lengths from 20 to 30 feet and constructed the following table:

Path length Ways to pave Seconds to find

20 10,946 0.83
21 17,711 1.32
22 28,657 2.14
23 46,368 3.49
24 75,025 5.61
25 121,393 9.08
26 196,418 14.51
27 317,811 23.56
28 514,229 37.87
29 832,040 61.28
30 1,346,269 99.67

As you can see from the table, although our tree-recursive procedure is very
elegant, it also takes an enormous amount of time except for very small path lengths.
Remembering the asymptotic outlook from Chapter 4, what is happening is that
the time is growing quickly as the path length increases. You may notice that the
number of ways to pave the path is also growing similarly quickly. If you compare
adjacent rows of the table, you’ll see that neither the number of ways to pave nor
the number of seconds taken is growing so fast as to double with each additional
foot of path. On the other hand, if you compare a row with the one two rows down
from it, you’ll see that both the number of pavings and the number of seconds are
growing quickly enough that they more than double with each additional 2 feet of
path. So, if we use n to denote the path length in feet, the empirical evidence seems
to suggest that both the number of pavings and the time taken have order of growth
Q(bn) where the base of the exponent, b is somewhat more than

√
2 but less than 2.

(Exponential growth with a base of 2 would double each foot, whereas with a base
of

√
2, it would double every 2 feet.) It turns out that it isn’t hard to show that the

number of pavings and the time grow faster than (
√

2)n and slower than 2n. We’ll
take a minute to do the necessary math and then move on to our real goal, which is
to show how to use memory in the form of vectors to dramatically reduce the order
of growth of tree-recursive processes like this one.

Before doing the mathematical analysis, we’ll give a more compact name to the
number of ways to pave an n-foot path using any mixture of 1- and 2-foot pavers.



382 Chapter 12 Dynamic Programming

Traditionally mathematicians use the symbol Fn11 for this number. That is, F1 is the
number of ways to pave a 0-foot walk, F2 is the number of ways to pave a 1-foot
walk, etc. The letter F stands for Fibonacci, because these numbers are known as
the Fibonacci numbers. These numbers were originally popularized by a problem
concerning rabbit reproduction in an early thirteenth-century arithmetic book whose
author, Leonardo Pisano, was sometimes known by the patronymic Fibonacci.

At any rate, our definition is that F1 5 1, F2 5 1, and for any n . 2, Fn 5
Fn21 1 Fn22. You can convince yourself that after the first two Fibonacci numbers,
they get steadily larger, that is, Fn . Fn21 for all n . 2. (All the Fibonacci numbers
are positive because adding positives yields a positive; thus, because Fn is the sum of
Fn21 and the positive number Fn22, it must be larger than Fn21.) We can get some
handle on how fast the Fibonacci numbers grow by observing that Fn 5 Fn21 1Fn22,
and because the numbers are increasing in size, we have Fn21 . Fn22 (for n . 3).
Therefore, Fn must be larger than twice Fn22 but not as large as twice Fn21 (again,
for n . 2). Thus we have shown that the number of ways to pave a path more than
doubles with every 2 feet in length but doesn’t grow quickly enough to double every
foot, in keeping with the empirical evidence.

All that remains is to show that the time our tree-recursive procedure takes to
compute Fn11 grows at the same order of growth as Fn11 itself. If you look at the
procedure, you can see that all it does is add up lots of 1s to get its answer. The base
case invocations supply the 1s, and the remaining procedure invocations add them
up. To get a total answer of Fn11, there must be Fn11 1s being added together, so the
recursion tree must have Fn11 base-case leaves. Imagine starting with those Fn11 1s in
a pile and repeatedly taking two numbers out of the pile, adding them together, and
putting the sum back into the pile. Continue until there is only one number left in
the pile. How many additions did you do? Well, each addition reduced the number
of numbers by one because you took two numbers out of the pile and put one back
in. You started with Fn11 numbers (the 1s) and ended with one number (Fn11 itself).
Thus, the number of numbers went down by Fn11 2 1, and that must be the number
of additions. This tells us how many invocations of the walk-count procedure
there are when you start by doing (walk-count n). The answer is Fn11 base-case
invocations plus Fn11 2 1 adding-up invocations, for a grand total of 2Fn11 2 1.
Thus, the amount of work done has the same order of growth as Fn11 does, namely,
a quickly growing exponential growth.

From the foregoing analysis, and our earlier table of ways to pave paths of length
20 through 30 feet, we can see that evaluating (walk-count 30) winds up involving
over 2.6 million invocations of walk-count. On the other hand, there isn’t much
variety in these invocations. Because the walk-count for a particular path length is
computed only from the counts for smaller path lengths, there are at most 31 differ-
ent walk-counts that can be involved in the computation of (walk-count 30):
(walk-count 0) up through (walk-count 30). Since we have over 2.6 million
invocations of walk-count, but at most 31 different ones, there clearly must be a



12.2 Revisiting Tree Recursion 383

great deal of repetition. This is our sign that there is a substantial opportunity for
improvement. This is a general sign, worth being on the lookout for in the future.
Therefore, we’ll give it a name:

The much computation, little variety sign: If a procedure does a great number
of subcomputations, but there isn’t much room for variety in the subcomputa-
tions that can arise, a lot of repeated computations must occur. That is a sign
that a large performance improvement may be possible.

With this sign to motivate us, we’ll turn to how we can use memory to get a
more reasonable order of growth. We will look at two techniques, memoization and
dynamic programming. We don’t actually need either of these techniques to write an
efficient version of the walk-count procedure—we could instead just write an itera-
tive version. However, we’re going to need memoization and dynamic programming
in our tool kit when we encounter harder problems. Rather than waiting for those
problems, we’ll learn the essential ideas of memoization and dynamic programming
in the comparatively simple context of the walk-count procedure. Moreover, the
iterative version we’re choosing not to write isn’t fundamentally very different from
the dynamic programming version.

The first technique we look at is called memoization. The basic idea behind
memoization is to use memory to store a table of the values that we’ve already
calculated. Then we can take advantage of the fact that once we’ve calculated a
particular Fibonacci number, we will never need to recalculate it.

With memoization, we need to make a slight change in how we calculate Fi-
bonacci numbers. Whenever we need to know a smaller Fibonacci number, as a
subproblem, we don’t want to just blindly go ahead and calculate it. Instead, we want
to first check to see if it is already in our table of values; if not, we compute it and
put it in the table. To accommodate this change, we’ll slightly modify walk-count
so that rather than directly invoking itself for the recursive calls, it invokes a separate
walk-count-subproblem procedure:

(define walk-count
(lambda (n)
(cond ((= n 0) 1)

((= n 1) 1)
(else (+ (walk-count-subproblem (- n 1))

(walk-count-subproblem (- n 2)))))))

Before we define walk-count-subproblem, and see how it stores the subproblem
values in a table for reuse, let’s address the question of where the table comes
from. What we can do is define a memoized-walk-count procedure that creates



384 Chapter 12 Dynamic Programming

the table (as an n-element vector), then has internal definitions of our modified
walk-count, walk-count-subproblem, and other helping procedures, and finally
calls the modified walk-count to do the actual computation. That is, the overall
template looks like this:

(define memoized-walk-count
(lambda (n)
(let ((table (make-vector n)))
(define walk-count
(lambda (n)
(cond ((= n 0) 1)

((= n 1) 1)
(else (+ (walk-count-subproblem (- n 1))

(walk-count-subproblem (- n 2)))))))
(define walk-count-subproblem
(lambda (n)

we still need to define this))
there will be some other helping stuff here
(walk-count n))))

Of course, we could have named the outer memoized-walk-count procedure
walk-count as well, which would have the advantage that any callers of the old,
slow, tree-recursive walk-count procedure would automatically now be calling the
sleek, new, memoized version. We’ve chosen to give it a distinctive name so that we
can more easily compare the two versions.

We can write walk-count-subproblem as a two-step process: first ensure that
the value is in the table (i.e., put it there if it isn’t already), and then in any case
return the value found in the table:

(define walk-count-subproblem
(lambda (n)
(ensure-in-table! n)
(vector-ref table n)))

To ensure that a value is in the table, we will first check to see if the table has
a value already stored in the position n; if not, we store one there. This leaves the
question: How do we check? We’ll take the approach of initially storing the false
value, #f, into all the table entries. That way when an actual value is stored into
one of the entries, it will change from being false to being something nonfalse.
Because Scheme interprets anything other than false as being true, we can write the
procedure as follows:



12.2 Revisiting Tree Recursion 385

(define ensure-in-table!
(lambda (n)
(if (vector-ref table n) ; anything but #f ?

’done
(store-into-table! n))))

The store-into-table! procedure itself is trivial:

(define store-into-table!
(lambda (n)
(vector-set! table n (walk-count n))))

The only missing step is initially filling the whole table with #f values. That can be
done using a procedure called vector-fill!, which we we would use as follows:

(vector-fill! table #f)

The procedure vector-fill! is very similar to the procedure zero-out-vector!
in Section 11.6 in that it puts a particular value in each location of a vector. This
procedure is specified by the R4RS Scheme standard as being “inessential” (i.e., not
every Scheme implementation is required to provide it).

Exercise 12.1

Write the procedure vector-fill!

At this point, we’ve seen all the pieces of memoized-walk-count and merely
need to put them together in one place:

(define memoized-walk-count
(lambda (n)
(let ((table (make-vector n)))
(define walk-count
(lambda (n)
(cond ((= n 0) 1)

((= n 1) 1)
(else (+ (walk-count-subproblem (- n 1))

(walk-count-subproblem (- n 2)))))))
(define walk-count-subproblem
(lambda (n)
(ensure-in-table! n)
(vector-ref table n)))



386 Chapter 12 Dynamic Programming

(define ensure-in-table!
(lambda (n)
(if (vector-ref table n)

’done
(store-into-table! n))))

(define store-into-table!
(lambda (n)
(vector-set! table n (walk-count n))))

(vector-fill! table #f)
(walk-count n))))

Now let’s take a careful look at how the table gets filled in. As soon as a value is
calculated for the first time, it is placed in the table. On the other hand, we can’t
compute a value until we have computed the previous two values. Thus, the very
first values that go in the table are F1 and F2, then F3, F4, and so on. This suggests
an iterative way of computing Fibonacci numbers, using a vector. The basic idea is
to construct a vector of values as we did in the memoized approach, but instead of
filling this vector in as needed, we start at the beginning (at index 0) and fill in the
whole vector systematically, start to finish. This second approach to using memory
to improve the time complexity of a procedure is called dynamic programming;
we’ll abbreviate dynamic programming to dp and call this version of the procedure
dp-walk-count:

(define dp-walk-count
(lambda (n)

(let ((table (make-vector n)))

(define walk-count

(lambda (n)

(cond ((= n 0) 1)

((= n 1) 1)

(else (+ (walk-count-subproblem (- n 1))

(walk-count-subproblem (- n 2)))))))

(define walk-count-subproblem

(lambda (n)
;; no need to ensure in table, given systematic filling in

(vector-ref table n)))

(define store-into-table!

(lambda (n)

(vector-set! table n (walk-count n))))

(define store-into-table-from!

;; does store-into-table! for values from start through n-1



12.2 Revisiting Tree Recursion 387

(lambda (start)

(if (= start n)
’done

(begin

(store-into-table! start)

(store-into-table-from! (+ start 1))))))

(store-into-table-from! 0)

(walk-count n))))

Exercise 12.2

Make a list of the parts of memoized-walk-count and dp-walk-count that are
identical and a list of those that are different.

Exercise 12.3

Compute by hand the value of (walk-count 10) (i.e., F11).

If you compare the procedure store-into-table-from! to your code for
vector-fill!, you will probably notice that the two procedures are very simi-
lar. Both of these have the same basic structure of evaluating an expression for the
integers ranging from some initial value up to some final value. We can abstract
these procedures by writing a higher-order procedure called from-to-do:

(define from-to-do
(lambda (start stop body)
(if (> start stop)

’done
(begin (body start)

(from-to-do (+ 1 start) stop body)))))

We can then rewrite dp-walk-count using from-to-do:

(define dp-walk-count-2
(lambda (n)
(let ((table (make-vector n)))
(define walk-count
(lambda (n)
(cond ((= n 0) 1)

((= n 1) 1)
(else (+ (walk-count-subproblem (- n 1))

(walk-count-subproblem (- n 2)))))))



388 Chapter 12 Dynamic Programming

(define walk-count-subproblem
(lambda (n)
;; no need to ensure in table
(vector-ref table n)))

(define store-into-table!
(lambda (n)
(vector-set! table n (walk-count n))))

(from-to-do 0 (- n 1) store-into-table!)
(walk-count n))))

The most important point to make is that both the memoized and the dynamic
programming versions are huge improvements over the original tree recursive version.
You may recall that the original version took times ranging from 0.83 seconds to
compute F21 up to 99.67 seconds to compute F31 on our computer. By contrast, the
memoized and dynamic programming versions ranged from 0.002 or 0.003 seconds
for F21 only up to 0.003 or 0.004 seconds for F31.

Because the two techniques are so similar and lead to such similarly dramatic
performance improvements, you may wonder why we’ve bothered to present both.
Each technique turns out to have its own advantages; however, they don’t show up
very clearly in this simple example. Therefore, we’ll wait until we’ve seen more
examples of memoization and dynamic programming (in the next two sections)
before presenting a comparison of the relative strengths of these two techniques. The
key point to remember, though, is that the differences between memoization and
dynamic programming are nowhere near as dramatic as those between either one of
them and tree recursion.

Although we probably could have figured out the dynamic programming version
of walk-count without writing the memoized version first, we will find that with
more complicated problems, doing a memoized version helps us visualize the table
without having to worry about how it gets filled in. In the rest of this chapter, we will
look at several problems, first concentrating on how to make a memoized version
and then looking at how to write dynamic programming solutions.

12.3 Memoization

In this section, we consider the binomial coefficients that are calculated by the
solution to Exercise 4.17 on page 103. These numbers describe the number of ways
to select a subset of k objects from a set of n distinct objects, for values of k and n
such that 0 # k # n. To choose k of n items, we can either choose the first item
and k 2 1 of the remaining n 2 1 or not choose the first item and choose k of the
remaining n 2 1. This provides the recursive case of our procedure:



12.3 Memoization 389

(define choose
(lambda (n k)
(cond ((= n k) 1)

((= k 0) 1)
(else (+ (choose (- n 1) (- k 1))

(choose (- n 1) k))))))

We can measure the time complexity of choose by counting the number of
additions that are needed to compute (choose n k). Because the base cases only
contribute a value of 1, we can use the same argument as we did with walk-count
to show that the number of additions needed to compute (choose n k) must be
one less than its actual value. However, finding bounds on the size of C(n, k) is very
complicated (and beyond the scope of this text). Even if n grows large, C(n, k) won’t
grow rapidly larger if k stays small. In particular, C(n, 0) 5 1 and C(n, 1) 5 n, neither
of which is rapidly growing. Similarly, if k stays close to n as n grows, C(n, k) again
won’t grow rapidly; as examples, consider that C(n, n) 5 1 and C(n, n 2 1) 5 n. The
most rapidly growing case is when k is midway in between these extremes, that is,
when we’re looking at C(2k, k) as k grows large. This case grows very large very fast,
as shown in the following table:

k C(2k, k)

1 2
2 6
3 20
4 70
5 252
6 924
7 3, 432
8 12,870
9 48,620

10 184,756
11 705,432
12 2,704,156
13 10,400,600
14 40,116,600
15 155,117,520
16 601,080,390
17 2,333,606,220
18 9,075,135,300
19 35,345,263,800
20 137,846,528,820



390 Chapter 12 Dynamic Programming

Thus, it is clear that our tree-recursive choose procedure, which adds up 1s one at
a time, is going to take an unreasonable amount of time even to solve such a small
problem as C(40, 20).

Exercise 12.4

Draw a tree, analogous to Figure 4.4 on page 92, showing how the value of C(4, 2)
is computed by choose. Your tree should have C(4, 2) at the root and six 1s as its
leaves.

Exercise 12.5

Explain how the “much computation, little variety sign” applies to this problem. In
particular, we showed that C(40, 20) 5 137,846,528,820, which the tree-recursive
choose procedure computes by adding up 137,846,528,820 1s, clearly a great deal of
computation. What about the variety side of the picture? In the course of computing
C(40, 20), the tree-recursive choose procedure winds up computing C(n, k) for other
values of n and k. Can you say anything about how many different combinations of
n and k might arise?

We will first improve the time complexity of choose by using memoization, just
as we did with the Fibonacci numbers. In the next section, we will look at a dynamic
programming solution to computing choose.

There is one major difference between choose and walk-count. Whereas
walk-count has only one parameter and thus can easily use a vector to store the
calculated values, choose has two parameters. If we think of the walk-count value
vector as being a table, we see that we were using a one-dimensional table there.
For choose we’ll need a two-dimensional table, or a grid. Such a table would have
two sets of indices, one for the rows and one for the columns. Each element in the
table can be located by two numbers—one that identifies which row the element
is in and one that identifies which column it’s in. A typical picture would then be
something like the following

0 1 2 3 4 5
0
1
2 6
3

In this example, the element in row 2 and column 4 is 6, and the height of the table
(number of rows) is 4, whereas the width (number of columns) is 6. Note that the
rows and columns are numbered starting from 0.



12.3 Memoization 391

Unfortunately, Scheme does not provide two-dimensional tables for us. We can
define an abstract data type for them; we’ll need to have a procedure that constructs
tables, a procedure that looks up a value in a table, and a procedure that changes
the value of a given location in a table. We could also have selectors that tell us
how many rows or columns a particular table has. Assume that these procedures are
specified by the following definitions:

(define make-table
(lambda (number-of-rows number-of-columns)
...))

(define table-ref
(lambda (table row column)
...))

(define table-set!
(lambda (table row column value)
...))

(define table-height
(lambda (table)
...))

(define table-width
(lambda (table)
...))

Exercise 12.6

Using these procedures, write

a. A procedure called table-fill! that takes a table and an element and sets every
entry in the table to the given element. For example, (table-fill! table 0)
would have a similar effect to that of zero-out-vector! in Section 11.6.

b. A procedure called display-table that nicely displays its table parameter.

How do we implement tables? We want to use vectors because they allow us to
store results. But somehow we need to create a two-dimensional table out of a one-
dimensional vector. One way to do this is to think of a table as a sequence of rows
(i.e., a vector of rows). Each row is then divided up into a sequence of elements, one
per column; in other words, each row is itself a vector. When we want the element



392 Chapter 12 Dynamic Programming

in row r and column c, we look at the vector in position r of our table and find the
element in position c of that vector. Thus, the procedure table-ref is defined by

(define table-ref
(lambda (table row col)
(vector-ref (vector-ref table row) col)))

Exercise 12.7

Write the procedure table-set!

Exercise 12.8

Write the procedures table-height and table-width. Each of these should take
a table as a parameter and return the number of rows or columns in that table.

Creating the table is fairly straightforward. We want to first create a vector for the
rows. Then we want to fill this vector with vectors:

(define make-table
(lambda (r c)
(let ((table (make-vector r)))
(from-to-do 0 (- r 1)

(lambda (i)
(vector-set! table i (make-vector c))))

table)))

Now that we have tables, we can make a memoized version of choose, which
is very similar to making a memoized version of walk-count. As before, we will
construct a table, although this one is a two-dimensional table instead of a one-
dimensional one. We will initially set all of the entries of this table to false. Before
using any element of the table, we ensure that it has been filled in:

(define memoized-choose
(lambda (n k)
(let ((table (make-table n (+ k 1))))
(define choose
(lambda (n k)
(cond ((= n k) 1)

((= k 0) 1)



12.3 Memoization 393

(else (+ (choose-subproblem (- n 1) (- k 1))
(choose-subproblem (- n 1) k))))))

(define choose-subproblem
(lambda (n k)
(ensure-in-table! n k)
(table-ref table n k)))

(define ensure-in-table!
(lambda (n k)
(if (table-ref table n k)

’done
(store-into-table! n k))))

(define store-into-table!
(lambda (n k)
(table-set! table n k (choose n k))))

(table-fill! table #f)
(choose n k))))

As you can see, the relationship between memoized-choose and choose is
essentially identical to the relationship between memoized-walk-count and
walk-count, except make-table, table-ref, table-set!, and table-fill! are
used in place of make-vector, vector-ref, vector-set!, and vector-fill!.

One subtle point is the size chosen for the table: n rows and k 1 1 columns. The
n rows are enough because the first argument to choose-subproblem will never
be any larger than n 2 1. (Remember, with n rows, the indices can run from 0 to
n 2 1.) By contrast, the second argument to choose-subproblem can be as large
as k. Therefore, k 1 1 columns are needed. That way the legal range for column
indices includes k.

One of the nice features about the memoized version of choose is the relationship
between the indices of the table entries and the values of those entries. More pre-
cisely, (choose i j) has the same value as (table-ref table i j), assuming
that the table has been filled in at that position. In the next example, we consider a
situation where this relationship is not as direct.

This second example is a chocolate version of a famous problem in computer
science. Suppose we are at a chocolate candy store and want to assemble a kilogram
box of chocolates. Some of the chocolates (such as the caramels) at this store are
absolutely the best in the world, and others are only so-so. In fact, we’ve rated each
one on a scale of 1 to 10, with 10 being the highest. Furthermore, we know the weight
of a piece of each kind; for example, a caramel weighs 13 grams. How do we put
together the best box weighing at most 1 kilogram? (The more well-known version
of this problem is known as the knapsack problem, but we have trouble imagining
packing chocolates into a knapsack rather than a box and trouble imagining anything
other than chocolate being of sufficient value to warrant optimization.)



394 Chapter 12 Dynamic Programming

Before we start writing a Scheme procedure to solve this problem, we need to
construct abstract data types for chocolates and boxes of chocolates and to define
what we mean by “the best” box.

Defining chocolates is quite easy. At the candy store, each chocolate has a filling
(e.g., caramel, marshmallow, maple cream) and a coating of dark, milk, or white
chocolate. We also know the weight of an individual piece of chocolate as well as a
number that describes its desirability. We will glue these four attributes together in
a list and use car and cdrs for selectors:

(define make-chocolate
(lambda (filling covering weight desirability)
(list filling covering weight desirability)))

(define chocolate-filling car)
(define chocolate-covering cadr)
(define chocolate-weight caddr)
(define chocolate-desirability cadddr)

Boxes of chocolates are just collections of pieces of chocolate. Some boxes are
empty (indeed, in one author’s office, all the boxes are empty); some contain several
pieces. The weight of a box of chocolates is the sum of the weights of the pieces.
Similarly, the desirability of a box is the sum of the desirabilities of the pieces. The
best box, then, is the one with a maximum desirability.

As an abstract data type, we will want to know what chocolates are in the box,
what the weight of a box is, and what the desirability of a box is. We will also need to
compare two boxes to see which one is better. For constructors, we will need to be
able to make an empty box, and we will also need to be able to add a chocolate to
a box. Because we’re concentrating on buying the box, we won’t worry about taking
chocolates out of the box.

Initially, we might be tempted to use lists of chocolates to implement our box
ADT. To find the weight of a box, we would just cdr down the list that represents it
and add up the weights of the individual pieces, and we would find the desirability
in a similar fashion. However, this approach can be time-consuming if we do a lot of
box-weight or box-desirability operations. Because we want to use this ADT
in a procedure that finds the most desirable box subject to a given weight limit, we
are likely to be doing exactly that.

We can improve on using just lists to represent boxes by using a combination of
a list of chocolates, a weight, and a desirability. We will need to be sure that the
weight of a box is actually equal to the sum of the weights of the chocolates in the list
and, similarly, that the desirability is the sum of the desirabilities of the chocolates.
Therefore, whenever we add a piece of chocolate to a box, we will want to cons it
onto the list, add its weight to the weight and add its desirability to the desirability.
Furthermore an empty box will have a weight of 0 and a desirability of 0:



12.3 Memoization 395

(define make-empty-box
(lambda ()
(list ’() 0 0)))

(define box-chocolates car)
(define box-weight cadr)
(define box-desirability caddr)

(define add-chocolate-to-box
(lambda (choc box)
(list (cons choc

(box-chocolates box))
(+ (chocolate-weight choc)

(box-weight box))
(+ (chocolate-desirability choc)

(box-desirability box)))))

Exercise 12.9

Using these procedures, write a procedure called better-box that takes two boxes
of chocolates and returns the one that is more desirable. If they are equally desirable,
you should return whichever one you choose.

How do we find the most desirable box weighing 1 kilogram or less? As with
choose, we will first concentrate on finding a tree-recursive procedure to pick a box
and then will write a memoized version of that. The input to the procedure will
be the weight of the box we would like to buy and a list of all the chocolates that
are available in the store. Here is an example of one such list, constructed from the
chocolates available at a small store in Ohio:

(define shirks-chocolates-rated-by-max
(list (make-chocolate ’caramel ’dark 13 10)

(make-chocolate ’caramel ’milk 13 3)
(make-chocolate ’cherry ’dark 21 3)
(make-chocolate ’cherry ’milk 21 1)
(make-chocolate ’mint ’dark 7 3)
(make-chocolate ’mint ’milk 7 2)
(make-chocolate ’cashew-cluster ’dark 8 6)
(make-chocolate ’cashew-cluster ’milk 8 4)
(make-chocolate ’maple-cream ’dark 14 1)
(make-chocolate ’maple-cream ’milk 14 1)))



396 Chapter 12 Dynamic Programming

Exercise 12.10

Although our program won’t be designed to take advantage of the peculiarities of
the above list, we should notice them so that we can check the program’s output
more easily.

a. Only three of the above ten kinds of chocolate can ever show up in an optimal
box of chocolates, no matter what the box’s weight limit is. Which three are they?

b. Figure out by hand the optimal box weighing no more than 20 grams and the
optimal box weighing no more than 25 grams.

To write a tree-recursive procedure to find the best box for Max, we will concen-
trate on the first chocolate in the list. We will find the best box of chocolates that
doesn’t have any dark chocolate-covered caramels in it, we’ll find the best box of
chocolates that has at least one dark caramel in it, and we’ll take the better of these
two. To make the best 1000-gram (or less) box that has at least one dark caramel
in it, we can make the best 987-gram (or less) box of any kind and then add one
(13-gram) dark chocolate caramel to it. Note that in the case where we exclude the
dark chocolate caramels, we have to find the best box of chocolates using a smaller
list of available chocolates, whereas in the case where we commit 13 grams of our
weight limit for the dark chocolate caramel, we have to assemble the rest of the box
with a smaller remaining weight limit. Thus, our base cases would occur when the
list of available chocolates is empty or when the weight limit is zero. We also need to
remember that if the weight limit is less than 13 grams, we can’t choose to include
a caramel!

(define pick-chocolates

(lambda (chocolates weight-limit)

(cond ((null? chocolates) (make-empty-box))

((= weight-limit 0) (make-empty-box))

((> (chocolate-weight (car chocolates)) ; first too heavy

weight-limit)

(pick-chocolates (cdr chocolates) weight-limit))

(else
(better-box

(pick-chocolates (cdr chocolates) ; none of first kind

weight-limit)

(add-chocolate-to-box

(car chocolates) ; at least one of the first kind

(pick-chocolates chocolates

(- weight-limit

(chocolate-weight

(car chocolates))))))))))



12.3 Memoization 397

This procedure is similar to choose in that the else clause has two recur-
sive calls; thus we would expect a worse-case scenario where the time complexity
is roughly exponential. To improve the time complexity, we will try to memoize
pick-chocolates. As with choose, we will need a two-dimensional table. One
dimension will correspond to the weight. In other words, we can use the numbers
from zero up to and including the weight limit to index the columns, say. The other
dimension will correspond to the list of available chocolates in some way. But we
must use integers for indexing the rows; we can’t use lists. One way to get around
this problem is to use the length of each list. Thus, if we’re using the list of Shirk’s
chocolates given above, the row with index 10 would correspond to the whole list of
chocolates, the row with index 9 would correspond to the cdr of that list, and so on.
The entries of the table will be boxes of chocolates. To be precise, the entry in the
ith row and jth column will be the best box of chocolates weighing at most j grams
and restricted to the last i elements of the list of available chocolates.

Exercise 12.11

We assume that the weight limit and the weight of each kind of chocolate is an
integer number of grams. Why is this assumption necessary?

Now that we know how our table works, writing the memoized version of
pick-chocolates is very straightforward. As with choose and walk-count, we
will want to construct a table and fill it with the value #f. The rest of the construc-
tion is also essentially the same as before. The one substantial novelty is that we will
need to use the length of the chocolates list for indexing the rows of the table:

(define memoized-pick-chocolates

(lambda (chocolates weight-limit)

(let ((table (make-table (+ (length chocolates) 1)

(+ weight-limit 1))))

(define pick-chocolates

(lambda (chocolates weight-limit)

(cond ((null? chocolates) (make-empty-box))

((= weight-limit 0) (make-empty-box))

((> (chocolate-weight (car chocolates))

weight-limit) ; first too heavy
(pick-chocolates-subproblem (cdr chocolates)

weight-limit))

(else

;;(continued)



398 Chapter 12 Dynamic Programming

(better-box

(pick-chocolates-subproblem
(cdr chocolates) ; none of first kind

weight-limit)

(add-chocolate-to-box

(car chocolates) ; at least one of the first kind

(pick-chocolates-subproblem

chocolates

(- weight-limit

(chocolate-weight (car chocolates))))))))))

(define pick-chocolates-subproblem

(lambda (chocolates weight-limit)
(ensure-in-table! chocolates weight-limit)

(table-ref table (length chocolates) weight-limit)))

(define ensure-in-table!

(lambda (chocolates weight-limit)

(if (table-ref table (length chocolates) weight-limit)

’done

(store-into-table! chocolates weight-limit))))

(define store-into-table!

(lambda (chocolates weight-limit)

(table-set! table (length chocolates) weight-limit
(pick-chocolates chocolates weight-limit))))

(table-fill! table #f)

(pick-chocolates chocolates weight-limit))))

Exercise 12.12

We used a tree-recursive procedure, count-combos, in Section 7.5 to determine
how many ways there were to redeem for prizes the 10 tickets one of our sons won
playing Whacky Gator at the local arcade.

a. Since we wrote Chapter 7, our children have grown older and are better Gator
Whackers. Empirically see how well (or poorly) the tree-recursive count-combos
procedure you wrote in Chapter 7 can accommodate this by seeing how the time
grows as the number of tickets to redeem grows.

b. Write a memoized version, and empirically compare it with your prior version.

12.4 Dynamic Programming

Although memoization can dramatically improve the performance of a tree-recursive
procedure, the memoized procedure still generates a recursive process. We saw that



12.4 Dynamic Programming 399

we could fill out the table in an iterative fashion with the Fibonacci example,
using dynamic programming. In this section, we will show how to use dynamic
programming to rewrite choose. Then we will consider another example, with
applications ranging from document management to molecular biology.

First, let’s look at the binomial coefficients, that is, the numbers calculated by
the procedure choose. If we look at the table of values at the end of computing
(memoized-choose 9 4), the table is as follows:

#f #f #f #f #f
1 1 #f #f #f
1 2 1 #f #f
1 3 3 1 #f
1 4 6 4 1
1 5 10 10 5
#f 6 15 20 15
#f #f 21 35 35
#f #f #f 56 70

As you can see, not all of the entries in the table wound up getting filled in because
not all of them had any bearing on computing C(9, 4). For example, the #f in the
lower left corner corresponds to C(8, 0); although this entry could legally be filled
in with the value 1, there was no reason to do so, because it did not arise as a
subproblem in computing C(9, 4). The #f values in the upper right portion of the
table are more interesting. These correspond to values of C(i, j) where i , j. In
particular, the far upper right entry is for C(0, 4), the number of ways of choosing
four items when you don’t have any to choose from. As before, these entries play
no role in computing C(9, 4). However, they are a little different from the values in
the lower left: Up until now we haven’t specified what the correct value is for C(i, j)
when i , j; our choose procedure doesn’t handle this case. To keep our dynamic
programming version of choose simple, we’ll have it fill in the whole table. To make
this possible, we’ll have to add one more case to the definition of choose. If you ask
how many ways there are to choose k items out of n, and k . n, there are 0 ways to
do it. Thus, the table as filled in by the dynamic programming version will be

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1
1 5 10 10 5
1 6 15 20 15
1 7 21 35 35
1 8 28 56 70



400 Chapter 12 Dynamic Programming

Now that we’ve straightened out what needs doing—and in particular, that the
upper right triangular portion of the table gets filled in with zeros—we can write the
dynamic programming version much as before:

(define dp-choose

(lambda (n k)

(let ((table (make-table n (+ k 1))))

(define choose

(lambda (n k)

(cond ((< n k) 0) ; this is the new case

((= n k) 1)

((= k 0) 1)

(else (+ (choose-subproblem (- n 1) (- k 1))

(choose-subproblem (- n 1) k))))))
(define choose-subproblem

(lambda (n k)

(table-ref table n k)))

(define store-into-table!

(lambda (n k)

(table-set! table n k (choose n k))))

(from-to-do 1 (- n 1)

(lambda (row)

(from-to-do 0 k

(lambda (col)
(store-into-table! row col)))))

(choose n k))))

Exercise 12.13

Now that we have added a case for n , k, we could eliminate the case for n 5 k.
Explain why.

Exercise 12.14

Write a dynamic programming version of the chocolate box problem in the previous
section. You’ll find it helpful to first write a procedure that when given a number, n,
returns the last n elements of the list of chocolates.

For our second example, consider a problem that occurs in systems that keep
multiple old versions of large files. For example, in writing this book, we used a
program that kept each draft of a chapter. After the first few versions of a given
chapter, the number of changes from one draft to the next was relatively small,



12.4 Dynamic Programming 401

whereas the size of each draft was relatively large. Rather than storing all of the
different versions, our system stores only the current one. For each prior draft, it
stores a list of the changes between that draft and the next. Now, the smaller this list
of changes is, the less space we’ll need to store it. Thus we’d like to find the smallest
possible list of changes to convert one version into the next.

We will look at a somewhat simplified version of this problem. To be more precise,
suppose we have two vectors of symbols, and we want to convert the first vector to
the second by doing one of three things. We can insert a symbol into the first vector
(in any one position), we can delete one occurrence of a symbol from the first
vector, or we can replace one occurrence of a symbol with another symbol. What is
the minimal number of changes we need to make to convert the first vector to the
second? What are the changes that need to be made? We will answer the first question
using dynamic programming and then outline a way of modifying that solution to
find an answer to the second. Even without the modifications our procedure could
be useful—it could be used to determine how similar two documents are, or, equally
well, how similar two DNA sequences are.

We’ll start by concentrating on the sizes of the two vectors, which we’ll call vector1
and vector2. Suppose vector1 has n elements and vector2 has m elements. If n 5 0,
the minimal number of changes we need to make is m because we will have to
insert each element of that second vector into the first one. Similarly, if m 5 0,
the minimal number of changes we need to make is n because we’ll need to do n
deletions.

Now suppose both sizes are nonzero. We can look at the last element in each
vector and determine what to do by seeing if these elements are the same or not.
If they are the same, we simply need to find out how many changes are needed to
convert the first n 2 1 elements of vector1 into the first m 2 1 elements of vector2.

If, on the other hand, the last elements differ, we have three options:

1. We could delete the last element of vector1 and then find the minimum number
of changes needed to convert the first n 2 1 elements of vector1 into all of vector2.

2. We could find the minimum number of changes needed to convert all of vector1
into the first m 2 1 elements of vector2 and then insert the last element of vector2
at the end.

3. We could replace the last element of vector1 with the last element of vector2 and
then find the minimum number of changes needed to convert the first n 2 1
elements of vector1 into the first m 2 1 elements of vector2.

Note that in each of these cases, we decrease the size of at least one of the
vectors, in the sense that we are looking at one fewer element. The vectors them-
selves don’t shrink; we just focus attention on the first n 2 1 or m 2 1 elements
rather than all n or m. For this reason, the changes procedure that follows is writ-
ten in terms of an internal procedure named changes-in-first-and-elements,



402 Chapter 12 Dynamic Programming

where (changes-in-first-and-elements i j) computes the minimum number
of changes needed to turn the first i elements of vector1 into the first j elements
of vector2. That is, it determines the number of changes needed in the first i and
j elements (of vectors 1 and 2, respectively), hence the name. This will involve
comparing the ith element of vector1 with the jth element of vector2 rather than
comparing the last elements of the vectors. (Note that the ith and jth elements are
in locations i 2 1 and j 2 1 because the locations are numbered from 0.)

Returning to the three possibilities listed above, let’s quantify how many changes
are needed in each case. We’ll use D(i, j) as a notation for the number of changes
needed to transform the first i elements of vector1 into the first j elements of vector2.
Then in the first case we have the one deletion of the ith element of vector1 plus the
D(i 2 1, j) changes needed to finish the job, for a total of 1 1 D(i 2 1, j). Similarly,
in the other two cases we get 1 1 D(i, j 2 1) and 1 1 D(i 2 1, j 2 1) as the number of
changes. Because we are interested in finding the minimum number of changes, we
simply need to select whichever of these three possibilities is smallest; the built-in
Scheme procedure min can do this for us.

In summary, here is the Scheme version of this algorithm:

(define changes
(lambda (vector1 vector2)
(let ((n (vector-length vector1))

(m (vector-length vector2)))
(define changes-in-first-and-elements
(lambda (i j)
(cond
((= i 0) j)
((= j 0) i)
(else
(if (equal? (vector-ref vector1 (- i 1))

(vector-ref vector2 (- j 1)))
(changes-in-first-and-elements (- i 1) (- j 1))
(min (+ 1 (changes-in-first-and-elements

(- i 1) j))
(+ 1 (changes-in-first-and-elements

i (- j 1)))
(+ 1 (changes-in-first-and-elements

(- i 1) (- j 1)))))))))
(changes-in-first-and-elements n m))))

Because of those three recursive calls in the else clause, this algorithm is a very
good candidate for either memoization or dynamic programming. In both cases,



12.4 Dynamic Programming 403

Figure 12.1 The three locations that influence a table entry are those above, to the left, and
diagonally up and to the left.

we’ll need to construct a table. We can use i and j to index the table, so we’ll use a
table with n 1 1 rows and m 1 1 columns, and we’ll assume that the table entry in
position (i, j) is D(i, j), the minimal number of changes needed to convert the first i
elements of the first vector to the first j elements of the second.

Exercise 12.15

Write a memoized version of changes.

To write the dynamic programming version of this procedure, note that to com-
pute one element of the table, we need to have already computed the element
immediately above it, the one immediately to its left, and the one that is one row
above and one column to the left of it. In other words, the table entry at position
(i, j) is computed from the entries in positions (i, j 2 1), (i 2 1, j), and (i 2 1, j 2 1),
as shown in Figure 12.1. This means that we should fill out the table in an order
such that the three entries at the tails of the three arrows are filled in before the entry
at the heads of the arrows. There are several such orders; the most obvious two are
either to go left to right across the top row, then left to right across the next row, etc.,
or alternatively to go top to bottom down the leftmost column, then top to bottom
down the second column, etc. If we arbitrarily choose the former of these options
(the row by row approach), we get this program:

(define dp-changes

(lambda (vector1 vector2)
(let ((n (vector-length vector1))

(m (vector-length vector2)))

(let ((table (make-table (+ n 1) (+ m 1))))

(define changes-in-first-and-elements

(lambda (i j)

(cond

((= i 0) j)



404 Chapter 12 Dynamic Programming

((= j 0) i)

(else
(if (equal? (vector-ref vector1 (- i 1))

(vector-ref vector2 (- j 1)))

(changes-in-first-and-elements-subproblem (- i 1)

(- j 1))

(min

(+ 1 (changes-in-first-and-elements-subproblem

(- i 1) j))

(+ 1 (changes-in-first-and-elements-subproblem

i (- j 1)))

(+ 1 (changes-in-first-and-elements-subproblem
(- i 1) (- j 1)))))))))

(define changes-in-first-and-elements-subproblem

(lambda (i j)

(table-ref table i j)))

(define store-in-table!

(lambda (i j)

(table-set! table i j

(changes-in-first-and-elements i j))))

(from-to-do 0 n

(lambda (row)
(from-to-do 0 m

(lambda (col)

(store-in-table! row col)))))

(changes-in-first-and-elements n m)))))

Exercise 12.16

We mentioned that this procedure uses just one possible valid ordering.

a. Change the procedure to the other (column by column) valid ordering we men-
tioned, and verify that it still works.

b. Give an example of an invalid order in which to fill in the table.
c. Give a third example of a valid order.

Exercise 12.17

The last line of the dp-changes procedure calculates D(n, m) using the expression

(changes-in-first-and-elements n m)



12.4 Dynamic Programming 405

It would be possible to instead just look this value up from the already filled-in table
by changing the above expression to

(changes-in-first-and-elements-subproblem n m)

The analogous modification would not have been legal in dp-choose, however.
Explain what the relevant difference is between the two procedures.

Exercise 12.18

The previous versions of changes all used as their base cases D(0, j) 5 j and
D(i, 0) 5 i. As preparation for the next exercise, modify dp-changes so that the only
base case is D(0, 0) 5 0. You’ll need to recursively define D(0, j) as 1 1 D(0, j 2 1)
for j . 0 and similarly define D(i, 0) as 1 1 D(i 2 1, 0) for i . 0.

Exercise 12.19

In this problem, we outline a way to modify the dp-changes from the previous
exercise so that it produces a list of the changes to make to vector1 in order to get
vector2.

a. First we need an ADT for the changes. Each change will have a certain type
(replace, insert, or delete) and a position at which to do the change. Insertions
and replacements will also need to know what symbol to use for the insertion
or replacement. Construct a suitable ADT, with three constructors and three
selectors.

b. Next, we’ll need an ADT for collections of changes, which is like a box of
chocolates in the previous section—the point of using a “collection” ADT
rather than a list is so that the number of changes in the collection can
be kept track of, rather than repeatedly counted with length. You’ll need
make-empty-collection and add-change-to-collection constructors and
collection-size and collection-list selectors.

c. We will change the values in the table so that they are collections of changes
rather than integers that indicate the minimum number of changes. In that case,
instead of using the procedure min to select the smallest of three numbers, we’ll
need to select the smallest of three collections of changes. Write a procedure that
gets three collections of changes, determines which has the smallest size, and
returns that collection.

d. Finally, write a version of dp-changes that produces the list of changes to make
rather than the number of them.



406 Chapter 12 Dynamic Programming

12.5 Comparing Memoization and Dynamic Programming

Having seen a number of examples of both memoization and dynamic programming,
let’s consider what their relative strong points are. Keep in mind, though, that we’re
talking here about relatively fine differences between two very similar and similarly
powerful techniques.

One benefit of memoization is that only those table entries that are needed are
computed, whereas in dynamic programming all table entries get systematically com-
puted in case they turn out to be needed. For some procedures this systematicness
makes no difference; for example, the memoized-walk-count procedure fills in the
whole table anyhow because it is all needed. However, consider the memoized and
dynamic programming versions of choose. As the example tables in Section 12.4
show, the dynamic programming version can compute significantly more table en-
tries. For some other problems, the difference is even more substantial.

The other principal advantage of memoization, relative to dynamic programming,
is that the programmer doesn’t have to figure out in what order the table needs to
be filled. For the procedures we’ve seen (and most encountered in practice), this
wasn’t difficult. Occasionally, however, one encounters a problem where the correct
ordering of the subproblems is a stumper, and then it is wise not to bother figuring
it out but rather to simply use memoization.

One of the biggest advantages of dynamic programming is that for some
problems—such as computing Fibonacci numbers—the dynamic programming
solution can be modified to use asymptotically less memory (in the case of
dp-walk-count, Q(1) instead of Q(n)). This is possible because the Fibonacci
recurrence, Fn 5 Fn21 1Fn22, is an example of a limited history recurrence, in which
only a limited number of preceding values (here 2) need to be remembered in order
to compute a new value. Thus, rather than using an n-element vector for the table
of values, it is possible to just keep cycling through the positions in a two-element
vector, reusing the same two storage locations over and over for the most recent two
Fibonacci numbers. A similar savings is possible in other limited-history recurrences.

As you can see, the most substantial differences between memoization and dy-
namic programming only arise in some problems, not in all. For those problems
where none of these special considerations apply, professional programmers gener-
ally choose dynamic programming because if one is careful about the programming
details, it can be slightly more efficient (by a constant factor—not a better asymptotic
order of growth). On the other hand, memoization is a tool you can quickly and
easily reach for, with less careful analysis.

12.6 An Application: Formatting Paragraphs

In this section we consider a problem that is encountered by many text formatting
or word processing programs. How do we find the best way to break a paragraph into



12.6 An Application: Formatting Paragraphs 407

separate lines? To be more precise, suppose we have all the words and punctuation
marks in a paragraph typed in somehow, and we need to decide how to break that
paragraph into lines. We are only allowed to break lines in between words; that is,
we can’t hyphenate words. We are also concerned about the amount of white space
that is left over on the lines. Ideally, the words on each line and the spaces between
those words would fill the entire width of the line, with no leftover space. Moreover,
if there is leftover space, we’d prefer that it was reasonably evenly spread among the
lines, with just a little per line, rather than some lines having large amounts of excess
space. Of course, we realize that the last line of the paragraph may need to have a
large chunk of white space, so we won’t count the amount of leftover white space
that appears on that line.

Let’s assume that the input to this problem will be a list of words, where each
word is a string that can contain letters, digits, punctuation marks, etc., but not any
spaces. We can find the width a word will occupy on the printed page by using a
string-width procedure. A simple version of this procedure would simply say that
each character occupies one unit of space; that works for fixed-width type fonts like
this one. If we make that simplifying assumption, the width of a string would be
the same as its length in characters, and we could simply do the following definition:

(define string-width string-length)

If you want to make our program work with type fonts in which the characters vary in
width, you’ll simply need to redefine string-width to take this fact into account.
We will also assume that we know the maximum width of a line, measured in the
same units as string-width uses. So, because our simple string-width returns
the width measured in characters, the maximum line width would be expressed in
characters too.

We would like the output from our formatting procedure to be a list of lists of
words. Each list of words represents a line in the paragraph. The amount of space
that a given line takes up will be the sum of the widths of the words in that line plus
the width of the spaces that go in between the words. The width of each space can
be given the name space-width; with widths measured in characters this would
simply be

(define space-width 1)

If string-width were changed to report widths in some other unit to accommodate
a variable-width font, space-width would need to be changed to reflect the width of
the space character in that font. The leftover space on a line is simply the difference
between the maximum line width and the amount of space that the line uses. The
amount of space the line uses can be computed as follows, using the sum procedure
from Chapter 7:



408 Chapter 12 Dynamic Programming

(define line-width
(lambda (word-widths)
(+ (sum word-widths) ; total width of words

(* (- (length word-widths) 1) ; number of spaces
space-width)))) ; each this wide

If we didn’t care about having a large chunk of white space on any one line, we
could measure how good a particular solution to our problem is by simply adding
up the amount of leftover space on all of the lines but the last one. The smaller
this number is, the better the solution is. However, we really do care about huge
chunks of white space. In other words, having nine excess spaces on one line and
one on another is not as good as having five on each. One way to adjust for this
problem would be to add up the cubes of the amounts of leftover space, because
cubing would make that huge chunk count for a lot more. (We could take some
other power, as well. In general, the higher the power, the greater the penalty is for
having one or two big amounts of leftover space.) We call this cubed leftover space
the cost; the following procedure computes the cost of a line:

(define line-cost
(lambda (word-widths max-line-width)
(expt (- max-line-width (line-width word-widths))

3)))

In summary, we want to find the best way to break our paragraph into lines, where
best means that we want to minimize the sum of the line costs on all of the lines
except for the very last line. We will assume that we’re given as input the maximum
line width and a list of strings. Our output is a list of lists of strings.

One approach to this problem is to first simplify it somewhat by taking the
list of strings and converting it into a list of numbers, namely, the widths of the
strings. Working from this list of widths, we will initially produce as output simply
a list of integers, where each of these integers specifies how many words are in
the corresponding line. Using this list, we can then chop up the original list of
strings into the final list of lists of strings. In other words, our overall formatting
process has three phases: preprocessing the list of strings into a list of widths, doing
the main decision-making about how many words to put on each line, and then
postprocessing to get a list of lists of strings. The following two exercises take care of
the preprocessing and postprocessing stages.

Exercise 12.20

Write a procedure that will take a list of strings and convert it into a list of numbers
that correspond to the string widths.



12.6 An Application: Formatting Paragraphs 409

Exercise 12.21

Write a procedure called make-lines that takes a list of elements and a list of
integers and breaks the list of elements into sublists. For example, (make-lines
’(a b c d e f g h i j) ’(2 3 5)) has a value of ((a b) (c d e) (f g
h i j)). You should assume that the integers in the second list add up to the
number of elements in the first list.

Now we can assume that our problem is to take a list of word widths and find the
best number of words to put on each line. We will work recursively by concentrating
on the first line. Suppose that we have n words total and we decide to put some
number of them, k, on the first line. If we break the remaining n 2k words into lines
in the best possible way, the overall line breaking will be the best that is possible
given the decision to put k words on the first line. Therefore, all we have to do is
experiment with different values of k and see which gives the best result, in each
case recursively invoking the procedure to optimally divide up the remaining n 2 k
words.

As we experiment with different values of k, we are looking to see which results
in the best solution to the line-breaking problem. How do we tell which solution
is best? One way to do this is to associate a cost with each solution. The cost of a
solution is the sum of the costs of all of the lines except for the last one. The best
solution is one with a minimal cost.

Now, our solutions will consist of a list of numbers that tell us how many words
to put onto each line. We can improve the efficiency of our program by connecting
this list with its associated cost.

Exercise 12.22

Construct an abstract data type for solutions that will glue together a list of integers,
called breaks, and a number, called cost. You should have one constructor and
two selectors:

(make-solution breaks cost)
(breaks solution)
(cost solution)

Exercise 12.23

Write a procedure better-solution that when given two solutions returns the one
with the lower cost. If the two have equal costs, either can be returned.



410 Chapter 12 Dynamic Programming

As the paragraph formatting procedure systematically experiments with vary-
ing numbers of words on the first line, it needs to determine the best solution
that results. One way we can arrange for this is with a higher-order procedure,
best-solution-from-to-of, much like from-to-do. Like from-to-do, it will
apply a procedure to each integer in a range. Each time the procedure is applied, it
is expected to produce a solution as its result, and the best of these (as determined
by your better-solution procedure) gets returned:

(define best-solution-from-to-of
(lambda (low high procedure)
(if (= low high)

(procedure low)
(better-solution (procedure low)

(best-solution-from-to-of (+ low 1) high
procedure)))))

When this best-solution-from-to-of procedure is used to try out the different
possibilities for how many words go on the first line, the first argument (low) will
be 1, because that is the minimum number of words that can be put on a line. How
about the second argument? What is the maximum number of words that can be put
on the first line? This depends on how wide the words are and what the maximum
line width is.

Exercise 12.24

Write a procedure num-that-fit that takes two arguments. The first is a list of
word widths and the second is the maximum line width. Your procedure should
determine how many of the words (from the beginning of the list) can be fit onto
a line. Remember to account for the spaces between the words, each of which has
the width named space-width.

At this point, we are ready to write the format-paragraph procedure itself. It
takes as arguments the list of word widths for the paragraph and the maximum line
width. It returns a solution object, which contains the best possible set of breaks
together with the cost of that set of breaks. (Remember that the breaks are the
number of words on each line.) This procedure first checks for two special cases:

1. If all the words can be fit on a single line, that is the best solution and has cost 0
because excess space on the last line isn’t counted.

2. If no words can be put on the first line without overfilling it (i.e., even the first
word alone is too wide for the maximum line width), an error message is given
because the given formatting problem is insoluble.



12.6 An Application: Formatting Paragraphs 411

Other than these two special cases, the procedure follows the strategy we outlined
earlier of systematically trying all the possibilities for how many words to put on the
first line:

(define format-paragraph ;returns solution
(lambda (word-widths max-line-width)

(let ((most-on-first (num-that-fit word-widths max-line-width)))

(cond ((= most-on-first (length word-widths))

(make-solution (list most-on-first) 0)) ; all on first

((= most-on-first 0)

(error "impossible to format; use shorter words"))

(else

(best-solution-from-to-of

1 most-on-first

(lambda (num-on-first)
(let ((solution-except-first-line

(format-paragraph (list-tail word-widths

num-on-first)

max-line-width)))

(make-solution

(cons num-on-first

(breaks solution-except-first-line))

(+ (cost solution-except-first-line)

(line-cost (first-elements-of

num-on-first
word-widths)

max-line-width)))))))))))

Exercise 12.25

Put this procedure together with the ones you wrote for computing the list of widths
from a list of strings, the breaks selector you wrote, and the make-lines procedure
you wrote. This should let you format a list of words into a list of lists of words,
one per line. Try this out with some short lists of words and narrow maximum line
widths. Try scaling up the number of words and/or the maximum line width; how
tolerable is the growth in time?

Of all of the procedures we’ve considered so far, this one probably makes the
most tree-recursive calls because it tries out all possible numbers of words to place
on each line. This fact makes it a very good candidate for memoizing or for using
dynamic programming.



412 Chapter 12 Dynamic Programming

The various subproblems solved in the course of formatting a paragraph consist of
formatting tails of that paragraph, but with the same maximum line width. Thus only
a one-dimensional table (vector) is needed, indexed by the number of words. That
is, the entry at position n in the vector will contain the solution object showing the
best way to break the last n words of the paragraph into lines, which means that
the length of the word-widths list is used to index the table, much as the length
of the chocolates list was used as an index in the chocolate box problem.

Exercise 12.26

Write a memoized version of format-paragraph. Test your memoized version to
be sure it produces the same answers as the nonmemoized version. Also, empirically
compare their speed as the number of words and/or the maximum line width grows.

In writing a dynamic programming version, it will be helpful to have a procedure
that given a number n computes the tail of length n of the word-widths list. Again,
this problem is analogous to the situation in the chocolate-box problem.

Exercise 12.27

Following the hint just given, write a dynamic programming version of
format-paragraph. Again, test that it produces the same results as the other versions
and empirically compare its performance.

Review Problems

Exercise 12.28

We implemented two-dimensional tables in terms of one-dimensional vectors by
representing each table as a vector of vectors, one per row. The most obvious al-
ternative would be to continue to have a vector of vectors but make it be one per
column. However, we have another, less obvious alternative: We can store all the
elements of an n 3 m table in a single vector of length nm. For example, the 15
elements of a 3 3 5 table can be stored in the 15 elements of a vector of length
15. The two most straightforward ways to do this alternative are either to store first
the elements from the first row, then those from the second row, etc., or to start
with the elements from the first column, then those from the second column, etc.
Note that in either case you will need to store the width and height of the table, not
only because table-width and table-height are selectors for the table ADT, but
more crucially in order to calculate the appropriate index into the vector of table
values. One easy thing we can do is to let a table be represented by a three-element



Review Problems 413

vector, where the first two elements represent the width and height and the third
element is the vector that stores the table values. Reimplement the table ADT using
either of these variations (i.e., storing the elements row by row or column by column
in a single vector).

Exercise 12.29

Suppose you are the instructor of a course with n students, and you want to divide
the students into k teams for a project. You don’t care how many students are on
each team (for example, that they be equal), except that each team must have at
least one student on it, because otherwise there wouldn’t really be k teams. How
many ways can you divide the students up?

This problem can be analyzed much as we analyzed choose. The first student
can either be in a team alone or in a team with one or more others. In the first case,
the remaining n21 students need to be divided into k21 teams. In the second case,
the remaining n 2 1 students need to be divided into k teams, and then one of those
k teams needs to be chosen to add the first student to. So, if we use S(n, k) to denote
our answer, we have S(n, k) 5 S(n 2 1, k 2 1) 1 kS(n 2 1, k). (We’re using the letter
S because numbers computed in this way are conventionally called Stirling numbers
of the second kind.) Of course, this equation is only the recursive case; you’ll need
one or more base cases as well.

Write a tree-recursive procedure for computing S(n, k) and then make it more
efficient using memoization or dynamic programming. (Or you could first rewrite it
using memoization and then using dynamic programming.)

Exercise 12.30

We defined the procedure from-to-do earlier in this chapter. This procedure is
very similar to the so-called FOR loop from other languages. Because we learned
in Chapter 10 how to add features to Scheme, it would be nice to add actual FOR

loops to Mini-Scheme. To illustrate what we mean, consider the following use of the
procedure from-to-do:

(from-to-do 2 (* 3 4)
(lambda (n) (display (* 2 n))))

With FOR loops, we could instead write:

(for n = 2 to (* 3 4) do (display (* 2 n)))

This exercise will work through the details of adding FOR loops to Mini-Scheme.



414 Chapter 12 Dynamic Programming

Let’s choose to implement FOR loops using a new AST constructor make-for-
ast. The skeleton for make-for-ast, with the important code left out, is as follows:

(define make-for-ast
(lambda (var start-ast stop-ast body-ast)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate-in)

(lambda (global-environment)

code for evaluate-in ))

((equal? message ’substitute-for)
(lambda (value name)

code for substitute-for ))

(else (error "unknown operation on a for AST"
message)))))

the-ast))

a. Write the pattern/action that needs to be added to micro-scheme-parsing-
p/a-list for FOR loops.

b. Add the code for evaluate-in. (Hint: You can use the procedure from-to-do.)
c. Add the code for substitute-for-in.

Exercise 12.31

Imagine the following game: You are given a path that consists of white and black
squares. The exact configuration of white and black squares varies with the game
but might for example look as follows:

You start on the leftmost square (which we’ll call square 0), and your goal is to
move off the right end of the path in the least number of moves. However, the rules
stipulate that



Review Problems 415

If you are on a white square, you can move either 1 or 2 squares to the right.
If you are on a black square, you can move either 1 or 4 squares to the right.

How can we determine, for a given path, the least number of moves we need?
One way to compute this number is to write a procedure fewest-moves that takes a
path and a position on the path and computes the minimum number of moves from
that position. Thus, to determine the minimum number of moves for the preceding
path, we would evaluate:

(fewest-moves (vector ’white ’black ’white ’white ’white
’black ’white ’white ’black ’white
’black ’white ’white ’black ’black
’white ’white ’white)

0)

Note that we pass the path as a vector as well as the current square (in this case 0).
Here is one way to implement fewest-moves:

(define fewest-moves
(lambda (path i) ; path is a vector

; i is the position within path
(cond ((>= i (vector-length path)) ; right of path

0)
((equal? (vector-ref path i) ’white)
(+ 1 (min (fewest-moves path (+ i 1))

(fewest-moves path (+ i 2)))))
(else
(+ 1 (min (fewest-moves path (+ i 1))

(fewest-moves path (+ i 4))))))))

a. Write a memoized version of fewest-moves.
b. Write a dynamic programming version of fewest-moves. Be sure to remember

that the simplest subproblems, in the sense of being closest to the base case, do
not correspond to smaller values of the argument i in this problem.

c. Modify fewest-moves, and your memoized and/or dynamic programming ver-
sion of it, to produce a list of moves rather than just the number of moves that
are necessary.

Exercise 12.32

The ps procedure that follows calculates how many ways we can parenthesize an
n-operand expression. For example, (ps 4) evaluates to 5 because there are five



416 Chapter 12 Dynamic Programming

ways to parenthesize a four-operand expression: a 2 (b 2 (c 2 d)), a 2 ((b 2 c) 2 d),
(a 2 b) 2 (c 2 d), (a 2 (b 2 c)) 2 d, and ((a 2 b) 2 c) 2 d.

(define from-to-add
(lambda (start end f)
(if (> start end)

0
(+ (f start)

(from-to-add (+ start 1) end f)))))

(define ps
(lambda (n)
(cond ((= n 1) 1)

((= n 2) 1)
(else
(from-to-add 1 (- n 1)

(lambda (k)
(* (ps k) (ps (- n k)))))))))

a. Write a memoized version of ps.
b. Write a dynamic programming version of ps.

Exercise 12.33

The function h(n) is defined for nonnegative integers n as follows:

h(n) 5


1 if n , 2
h(n 2 1) 1 h(n 2 2) if n . 2 and n is odd
h(n 2 1) 1 h(n6 2) if n $ 2 and n is even

a. Write a dynamic programming procedure for efficiently calculating h(n).
b. Is it possible to modify the procedure so that it stores all the values it needs in a

vector of fixed size, as walk-count can be modified to store the values it needs
in a two-element vector? (A vector of “fixed size” is one with a size that does not
depend on the parameter, n.) Justify your answer.

Exercise 12.34

The following best procedure determines the best score that is possible on the
following puzzle. You are given a list of positive integers. Let’s say the first one is k.



Chapter Inventory 417

You can either claim k points for yourself and then skip over k more numbers after
the k, or you can just skip over the k itself without claiming any points. These options
repeat until the numbers are all gone. When skipping over the next k numbers, if
there aren’t k left, you just stop. For example, given the list

(2 1 3 1 4 2)

your best bet is to first claim 2 points, which means you have to skip over the first 1
and the 3, then pass up the opportunity to take the second 1, so that you can take
the 4, which then causes you to skip the final 2. Your total score in this case is 6; had
you played less skillfully, you could have gotten a lower score. The best procedure
returns the best score possible, so (best ’(2 1 3 1 4 2)) would return 6.

(define best
(lambda (l)
(if (null? l)

0
(let ((k (car l))

(rest (cdr l)))
(max (best rest)

(+ k (best (skip-of k rest))))))))

(define skip-of
(lambda (n l) ;skip first n elements of l
(if (or (= n 0) (null? l)) ;l can be shorter than n

l
(skip-of (- n 1) (cdr l)))))

a. Write a memoized version of best.
b. Write a dynamic programming version of best.

Chapter Inventory

Vocabulary

exponential growth
Fibonacci numbers
memoization
dynamic programming

binomial coefficients
knapsack problem
Stirling numbers of the second kind
FOR loops



418 Chapter 12 Dynamic Programming

Slogans

Much computation, little variety sign

Abstract Data Types

two-dimensional tables
chocolates
boxes

changes
collections (of changes)
solutions (line breaking)

New Predefined Scheme Names

vector-fill!

Scheme Names Defined in This Chapter

walk-count
memoized-walk-count
walk-count-subproblem
ensure-in-table!
store-into-table!
dp-walk-count
from-to-do
dp-walk-count-2
choose
make-table
table-ref
table-set!
table-height
table-width
table-fill!
display-table
memoized-choose
make-chocolate
chocolate-filling
chocolate-covering
chocolate-weight
chocolate-desirability
make-empty-box
box-chocolates
box-weight
box-desirability
add-chocolate-to-box
better-box

shirks-chocolates-rated-by-max
pick-chocolates
memoized-pick-chocolates
dp-choose
changes
dp-changes
make-empty-collection
add-change-to-collection
collection-size
collection-list
string-width
space-width
line-width
line-cost
make-lines
make-solution
breaks
cost
better-solution
best-solution-from-to-of
num-that-fit
format-paragraph
make-for-ast
fewest-moves
from-to-add
ps
best
skip-of



Notes 419

Notes

We mentioned briefly that the changes-dynamic procedure for computing the
minimum number of changes needed to convert one vector of symbols into another
has applications in comparing the sequences occuring in biological molecules such
as DNA. For a discussion of this application, as well as the application of this
algorithm and its relatives to problems in speech processing and other areas, see [46].

The problem of breaking a paragraph into lines in a visually appealing way by
minimizing the sum of the cubes of the amount of excess space on each line is a
gross simplification of the actual approach used by the TEX program, which was used
to format this book. That program uses a dynamic programming algorithm but takes
into account not only the amount of excess space on each line but also the possibility
of hyphenation and a number of esoteric considerations. For a complete description
of the quantity that it minimizes, see [34]. For the program itself, see [33].


