Maximum Cut Vertices

MCS-236

Fall 2011

The path P_{n} has $n-2$ cut vertices. We can show that this is the most cut vertices for any graph of order n.

Lemma 1 If T is a spanning tree of a nontrivial connected graph G, then T has at least as many cut vertices as G does.

Proof. Any cut vertex of G is a cut vertex of T. because for any three vertices u, v, and w, if all paths from u to w in G pass through v, then the same must be true in T.

Theorem 1 If G is a nontrivial connected graph of order n, then G has at most $n-2$ cut vertices.

Proof. Any tree of order n has at least two vertices that are not cut vertices, namely the leaves. Therefore, any spanning tree T of G has at most $n-2$ cut vertices. By Lemma $1, G$ has no more cut vertices than T does, so G too has at most $n-2$ cut vertices.

