Some Proofs about Distances and Centers

MCS-236

Fall 2011

Theorem 1 If G is a graph with radius $\operatorname{rad} G$ and diameter $\operatorname{diam} G$, then $\operatorname{rad} G \leq \operatorname{diam} G \leq 2 \operatorname{rad} G$.

Proof. Because the radius is the minimum eccentricity of any vertex and the diameter is the maximum, the radius cannot be larger than the diameter.

Let u and v be vertices of G such that $d(u, v)=\operatorname{diam} G$. Let w be a central vertex so that $e(w)=\operatorname{rad} G$. This means that no vertex is at a distance greater than $\operatorname{rad} G$ from w. In particular $d(u, w)$ and $d(v, w)$ are both less than or equal to $\operatorname{rad} G$. Therefore, $d(u, w)+d(v, w) \leq 2 \operatorname{rad} G$. By the triangle inequaltiy, $d(u, v) \leq d(u, w)+d(v, w)$. This establishes that $\operatorname{rad} G \leq \operatorname{diam} G \leq 2 \operatorname{rad} G$.

Theorem 2 For any graph G, there is some graph H that has G as its center.

Proof. We can construct H by adding four vertices to $G: i_{1}, i_{2}, o_{1}$, and o_{2}. The new edges are $o_{1} i_{1}, o_{2} i_{2}$, and for all v in $V(G), v i_{1}$ and $v i_{2}$. The eccentricity within H of all vertices in $V(G)$ is 2, whereas the eccentricity of the added vertices is 3 for the i vertices and 4 for the o vertices.

Theorem 3 For a graph G, there exists a graph H that has G as its periphery if and only if all vertices in G have eccentricity 1 or no vertices in G have eccentricity 1.

Proof. If all vertices in G have eccentricity 1, then G can itself serve as H. On the other hand, if no vertices in G have eccentricity 1 , then H can be formed by adding one new vertex, s, and for each vertex v in $V(G)$, the edge $s v$.

To show the converse, suppose that G has a vertex u that has eccentricity 1 , other vertices v and w that have eccentricities greater than 1 , and yet G is the periphery of some graph H. We show this leads to a contradiction.

We know that the diameter of G is greater than 1. Because G is an induced subgraph of H, the diameter of H is also greater than 1 . Since G is the periphery of H, any vertex in $V(G)$, such as u, must have $e_{H}(u)=$ $\operatorname{diam} H>1$. Since $e_{G}(u)=1$, there must be some vertex s in $V(H)-V(G)$ that u is farthest from. However, s also has eccentricity equal to $e_{H}(u)$ yet is not included in the periphery, producing a contradiction.

