Work from 2011-10-14

MCS-236 class
October 14, 2011

Theorem 1 In an acyclic graph with m edges, n vertices, and k components, $k=n-m$.

Proof. Each component is a tree, so in each component, there is one more vertex than edge. Summing all of the components, $k=n-m$.

We could also prove this in another, more elementary way. (Note that this still could use polishing.)

Proof. We can proceed by induction on m. If $m=0$, then each vertex is a component and $k=n-0$. Assume, then, that with $m-1$ edges there are $n-(m-1)$ components, that is, $n-m+1$ components. Adding another edge brings the total edges to m and combines two components. To see that it combines two components, consider the alternative possibility that the new edge, $s v$, is within one of the components. Because that component is connected, it already had an $s-v$ path. Thus, adding the edge $s v$ would complete a cycle, which is disallowed by the premise that the graph is acyclic.

